Efficiency and Accuracy Issues for
Sampling vs. Counting Modes
of Performance Monitoring Hardware

Shirley Moore!, Patricia Teller?, and
Michael Maxwell?

! University of Tennessee-Knoxville
shirley@Qcs.utk.edu
2 University of Texas-El Paso
{pteller,mmaxwell}@cs.utep.edu

Abstract. Performance monitoring hardware is available on most mod-
ern microprocessors in the form of hardware counters and other registers
that record data about processor events. This hardware may be used
in counting mode, in which aggregate events counts are accumulated,
and/or in sampling mode, in which time-based or event-based sampling
is used to collect profiling data. This paper discusses uses of these two
modes and considers the issues of efficiency and accuracy raised by each.
Implications for the PAPI cross-platform hardware counter interface are
also discussed.

1 Introduction

Most modern microprocessors provide hardware support for collecting perfor-
mance data [2]. Performance monitoring hardware usually consists of a set of
registers that record data about the processor’s function. These registers range
from simple event counters to more sophisticated hardware for recording data
such as data and instruction addresses for an event, and pipeline or memory
latencies for an instruction. The performance monitoring registers are usually
accompanied by a set of control registers that allow the user to configure and
control the performance monitoring hardware. Many platforms provide hard-
ware and operating system support for delivering an interrupt to performance
monitoring software when a counter overflows a specified threshold.

Hardware performance monitors are used in one of two modes: 1) counting
mode to collect aggregate counts of event occurrences, or 2) statistical sampling
mode to collect profiling data based on counter overflows. Both modes have their
uses in performance modeling, analysis, and tuning, and in feedback-directed
compiler optimization. In some cases, one mode is required or preferred over
the other. Platforms vary in their hardware and operating system support for
the two modes. Some platforms, such as IBM AIX Power3, primarily support
counting mode. Some, such as the Compaq Alpha, primarily support profiling
mode. Others, such as the IA-64, support both modes about equally well. Either

mode may be derived from the other. For example, even on platforms that do
not support hardware interrupt on counter overflow, timer interrupts can be
used to periodically check for counter overflow and thereby implement statistical
sampling in software. Or, if the platform primarily supports statistical profiling,
event counts can be estimated by aggregating profiling data. However, the degree
of platform support for a particular mode can greatly affect the accuracy of that
mode.

Although aggregate event counts are sometimes referred to as “exact counts”,
and profiling is statistical in nature, sources of error exist for both modes. As in
any physical system, the act of measuring perturbs the phenomenon being mea-
sured. The counter interfaces necessarily introduce overhead in the form of extra
instructions, including system calls, and the interfaces cause cache pollution that
can change the cache and memory behavior of the monitored application. The
cost of processing counter overflow interrupts can be a significant source of over-
head in sampling-based profiling. Furthermore, a lack of hardware support for
precisely identifying an event’s address may result in incorrect attribution of
events to instructions on modern super-scalar, out-of-order processors, thereby
making profiling data inaccurate.

Because of the wide range of performance monitoring hardware available on
different processors and the different platform-dependent interfaces for accessing
this hardware, the PAPI project was started with the goal of providing a stan-
dard cross-platform interface for accessing hardware performance counters [1].
For a related project, see [11]. PAPI proposes a standard set of library routines
for accessing the counters as well as a standard set of events to be measured. The
library interface consists of a high-level and a low-level interface. The high-level
interface provides a simple set of routines for starting, reading, and stopping the
counters for a specified list of events. The low-level interface allows the user to
manage events in FventSets and provides the more sophisticated functionality
of user callbacks on counter overflow and SVR4-compatible statistical profiling.
Reference implementations of PAPI are available for a number of platforms (e.g.,
Cray T3E, SGI IRIX, IBM AIX Power, Sun Ultrasparc Solaris, Linux/x86, and
Linux/IA-64). The implementation for a given platform attempts to map as
many of the standard PAPI events as possible to the available platform-specific
events. The implementation also attempts to use available hardware and op-
erating system support — e.g., for counter multiplexing, interrupt on counter
overflow, and statistical profiling.

Through interaction with the high performance computing community, the
PAPI developers have chosen a set of hardware events deemed relevant and use-
ful in tuning application performance. Because modern microprocessors have
multiple levels in the memory hierarchy, optimizations that improve memory
utilization can have major effects on performance. PAPI provides a large num-
ber of events having to do with the memory hierarchy — e.g., cache misses for
different levels of the memory hierarchy, and TLB (translation lookaside buffer)
misses. PAPI metrics include counts of the various types of instructions com-
pleted, including integer, floating-point, load, and store instructions. Also in-

cluded are events for measuring how heavily different functional units are being
used, and for detecting when and why pipeline stalls are occurring. The appli-
cation programmer may be able to use pipeline performance data, together with
compiler output files, to restructure application code so as to allow the compiler
to do a better job of software pipelining. Another useful measure is the number
of mispredicted branches. A high number for this event indicates that some-
thing is wrong with the compiler options or that something is unusual about
the algorithm. See [1] for a more detailed discussion of uses of PAPI metrics for
application performance tuning.

The remainder of the paper is organized as follows: Section 2 discusses usage
models of hardware performance monitoring. Section 3 discusses accuracy issues.
Section 4 explores implications for the PAPI interface. Section 5 gives conclusions
and describes plans for future work.

2 Usage Models

There are basically two models of using performance monitoring hardware:

— the counting model, for obtaining aggregate counts of occurrences of specific
events, and

— the sampling model, for determining the frequencies of event occurrences pro-
duced by program locations at the function, basic block, and/or instruction
levels.

The first step in performance analysis is to measure the aggregate perfor-
mance characteristics of the application or system under study [8, 14]. Aggregate
event counts are determined by reading hardware event counters before and af-
ter the workload is run. Events of interest include cycle and instruction counts,
cache and memory access at different levels of the memory hierarchy, branch
mispredictions, and cache coherence events. Event rates, such as completed in-
structions per cycle, cache miss rates, and branch mispredictions rates, can be
calculated by dividing counts by the elapsed time.

The profiling model can be used by application developers, optimizing compil-
ers and linkers, and run-time systems to relate performance problems to program
locations. With adequate support for symbolic program information, application
developers can use profiling data to identify performance bottlenecks in terms of
the original source code. Application performance analysis tools can use profiling
data to identify performance critical functions and basic blocks. Compilers can
use profiling data in a feedback loop to optimize instruction schedules.

For example, on the SGI Origin the perfex and ssrun utilities are available
for analyzing application performance [14]. perfex can be used to run a program
and report either ”exact” counts of any two selected events for the R10000 (or
R12000) hardware event counters, or to time-multiplex all 32 countable events
and report extrapolated totals. This data is useful for identifying what perfor-
mance problems exist (e.g., poor cache behavior identified by a large number of

cache misses). ssrun can be used to run the program in sampling mode in order
to locate where in the program the performance problems are occurring.

Tools such as vprof [16] and HPCView [7] make use of profiling data provided
by sampling mode to analyze application performance. vprof provides routines
to collect statistical profiling information, using either time-based or counter-
based sampling (using PAPI), as well as both command-line and graphical tools
for analyzing execution profiles on Linux/Intel machines. HPCView uses data
gathered using ssrun on SGI R10K/R12K systems, or uprofile on Compaq
Alpha Tru64 Unix systems, followed by “prof -lines”, and correlates this data
with program source code in a browsable display.

Aggregate counts are frequently used in performance modeling to parame-
terize the models. For example, the methodology described in [15] generates

— a machine signature which is a characterization of the rate at which a ma-
chine carries out fundamental operations independent of any particular ap-
plication, and

— an application profile which is a detailed summary of the fundamental oper-
ations carried out by the application independent of any particular machine.

The method applies an algebraic mapping of an application profile onto a ma-
chine signature to arrive at a performance prediction. A benchmark called MAPS
(Memory Access Pattern Signature) measures the rate at which a single proces-
sor can sustain rates of loads and stores depending on the size of the problem and
the access pattern. Hardware performance counters are used to measure cache
hit rates of routines and loops in an application which are then mapped onto the
MAPS curve. Similarly, the “back-of-the-envelope” performance prediction tool
described in [13] makes use of aggregate event counts to construct hardware and
software profiles. A given hardware and software profile pair are then combined
in algebraic equations to produce performance predictions.

3 Accuracy Issues

Previous work has shown that aggregate count data may not be accurate, for
example when the granularity of the measured code is insufficient to ensure
that the overhead introduced by counter interfaces does not dominate the event
counts [10]. The analysis in [10] made use of three microbenchmarks to study
eight MIPS R12000 events. Currently we are extending this type of analysis
to four platforms: SGI R12K, IBM Power3, Linux/IA-64, and Linux/x86, and
nine events: number of loads, stores, floating-point operations, and instructions
executed, number of L1 I-cache, L1 D-cache, L2 cache, and TLB (translation
lookaside buffer) misses, and number of branch mispredictions.

As the table below indicates, the number of registers available on a processor
for event counting and the number of events that can be counted directly vary
from processor to processor. For example, as shown, the Intel Itanium supports
over 150 directly countable events [9], with many more derivable, while the
MIPS R12000 has 32 directly countable events [14]. As noted, these numbers

are associated with aggregate event counts as opposed to event counts produced
via sampling. For example, the Compaq Alpha supports only 4 directly countable
events, but many more events that can be counted using sampling.

Platform Counting Registers|Number of Events|Modes
MIPS R12K |2 32 C
IBM Power3|2 100+ C
Linux/IA-64(4 150+ C,S
Linux/x86 |2 80+ C,S

The Modes column of the table indicates the modes supported on the proces-
sor: C indicates support for direct counting of events and S indicates support for
sampling of events. For instance, on the TA-64, the number of times the processor
is stalled waiting for data may be counted directly or via sampling. In addition,
this processor offers duration counts where, in this example, the number of cycles
spent waiting on the stall also may be counted.

3.1 Methodology

The methodology used to study the accuracy of the performance counters is
similar to that used in [10]. It comprises seven phases, which are repeated as is
necessary.

1. design and implement a microbenchmark that permits event count predic-
tion,

. predict event count using tools and/or mathematical models,

. collect event count data using PAPI,

. collect event count data using a simulator (not always necessary or possible),

. compare predicted, actual, and simulated event counts,

. analyze results to identify and possibly quantify error, and

. when results indicate that prediction is not possible, verify event count ac-
curacy with an alternate means.

~N O Ut W N

The collection of event count data using PAPI is done by running the mi-
crobenchmark 100 times and computing the mean event count. To determine
the meaningfulness of the event count, the standard deviation is computed.

3.2 Microbenchmarks

A microbenchmark is a simple program, usually small in size, designed to stress
one particular aspect of a processor. The microbenchmark’s size or simplicity
facilitates the tracing of the execution path and prediction of the number of
events generated. For the events studied in this paper, four benchmarks are used:
Array, Loop, In-line, and Floating-point. In the Array benchmark elements of
a large array are accessed to stress the memory hierarchy. In it’s simplest form
the benchmark is as follows:

for(i = 0; i< array_size; i++)
{

ali] = 1;
}

In this benchmark each datum is accessed once, in sequence, causing one
L1 data cache miss for each cache line accessed during the execution of the
benchmark. For a processor with an L1 cache line size of 8 words this causes
125 L1 cache misses per 1000 data accesses. Since there is no reuse of the data,
each miss is a compulsory miss and the replacement policy of the cache does not
factor into the results.

The Loop benchmark consists of a sequence of instructions within a loop. The
number of data accesses is small and the data is reused in order to minimize cache
perturbation. This benchmark is used to count the number of loads, stores, and
instructions executed. In it’s basic form the benchmark is as follows:

for (i=0; i<number_of_loops; i++)

{

FF++++ T

M O T M OO O OCE
1]
Ll N R o O I R o
T 0 0 T - -

}

For the benchmarks referred to in this paper the pattern was repeated to con-
struct a loop body of 100 instructions and the number of loop iterations was
varied. For event count predictions the code was compiled to an assembler file,
the number of load instructions, store instructions, and total instructions was
counted, and the event counts were multiplied by the number of loop iterations.

The In-line benchmark uses the same sequence of instructions as the Loop
benchmark but omits the loop. The sequence of instructions is repeated until
the desired number of instructions is obtained. This benchmark is designed to
stress the instruction cache hierarchy. Code sizes of 100 to 1,000,000 instructions
were used. For event count predictions the code was compiled to the assembler
level and the number of instructions was counted.

For the Floating-point benchmark a similar pattern was used with the sub-
stitution of floating-point values. However, optimization on some platforms re-
quired that the constant 1.0 be replaced by an input parameter (FP_val).

for (i=0; i<number_of_loops; i++)

{
a = FP_val;
b = FP_val;
c = FP_val;
a =b + FP_val;
b = a + FP_val;
c =a+ b;
a=>b+ c;
b=a+c;
c =a + b;
a = FP_val;

}

The number of floating-point instructions was counted at the assembler level.

3.3 Event Count Errors

Different classes of event count errors are associated with counting and sampling
modes. Here the term error is used to denote a difference in the predicted event
count vs. the actual event count. The following two subsections address both
classes of errors.

Aggregate Count Errors Using the methodology discussed above four types
of errors associated with aggregate event counts were identified: overhead or
bias, multiplicative, random, and unknown. The first type of error, overhead or
bias, denotes a constant difference between the predicted and actual counts that
is attributable to the interface, in this case, PAPIL. The overhead or bias errors
associated with the events counts for the number of loads and stores executed
on the processors of interest are identified in the table below. If the event count
is large, the error will not be significant. However, calibration can be achieved
by subtracting the bias from the actual count.

MIPS R12K IBM Power3|Linux/IA-64|Linux/Pentium
Loads 46 28 86 N/A
Stores|Multiplicative Error|31 129 N/A

To compare the bias or overhead error associated with the PAPI interface,
the overheads for starting/stopping and for reading the counters in terms of
processor cycles were measured. These results, as well as overheads measured
for libperfex, are shown in the table below.

The second type of error, multiplicative, is associated with an actual count
that exceeds the predicted count by a defined factor. For example, the event
count, for the number of floating-point operations in a benchmark containing

Linux/x86|Linux/IA-64|Cray T3E|IBM Power3|MIPS R12K
PAPI start/stop 3524 22115 3325 14199 24850
(cycles/call pr)
PAPI read 1299 6526 1514 3126 9810
(cycles/call)
libperfex start/read 5842
(cycles/call pr)

only floating-point additions is without error for the R12K, TA-64, and Pentium.
In contrast, the actual count is twice that of the predicted count for the Power3.
If the event count is large, the error is large. Calibration can be achieved by
dividing by the factor, in this case 2.

The third type of error, random, occurs when the actual PAPI event counts
differ significantly from the predicted count, but only part of the time. For
example, for the IA-64, L1 D-cache differences of 3 orders of magnitude were
observed about 8% of the time. Such a random error can make the event count
unusable. If a code of interest is run repeatedly, and the event counts averaged,
such large errors will skew the average to the point of unreliability. Removing
the ’outliers’ will produce an event count that is more in line with the predicted
count. However, these outliers are cause for concern.

The fourth type of error, unknown, occurs when we simply do not know how
the processor is behaving or the error is a combination of error types. One ex-
ample occurs when counting L1 D-cache misses. All of the processors of interest
in this paper use some type of data prefetch mechanism. The mechanisms may
include hardware such as one or more stream buffers as well as algorithms that
govern the behavior of the hardware. While some manufacturers publish partial
information about the hardware used in the processors they are universally re-
luctant to release details of the algorithms used. Without knowledge of how the
processor functions, it is very difficult, if not practically impossible, to predict
event counts associated with cache misses when prefetching is effective. Nonethe-
less, other methods may be employed to determine if the results are reasonable.
For example, in this case, the Array microbenchmark was used to show that the
cycle count increased proportionately to the increase in cache misses. Note that
for this benchmark other sources of additional cycle counts (e.g., TLB misses)
are insignificant. Another way that these event counts were verified was through
the use of a microbenchmark that foils the prefetching facility. For this bench-
mark, the predicted event count for arrays larger than the cache was within 10%
of the actual count. Of course, bias errors are hidden in these counts. In contrast
to the errors associated with L1 D-cache miss event counts, there are errors as-
sociated with other events, e.g., branch mispredictions, that are not predictable
nor verifiable.

Sampling Errors Many profiling tools rely on gathering samples of the pro-
gram counter value (PC) on a periodic counter overflow interrupt. Ideally, this

method should produce a PC sample histogram where the value for each in-
struction address is proportional to the total number of events caused by that
instruction. On modern out-of-order processors, however, it is often difficult or
impossible to identify the exact instruction that caused the event.

The Compaq ProfileMe approach addresses the problem of accurately at-
tributing events to instructions by sampling instructions rather than events[5,
6]. An instruction is chosen to be profiled whenever the instruction counter
overflows a specified random threshold. As a profiled instruction executes, infor-
mation is recorded including the instruction’s PC, the number of cycles spent in
each pipeline stage, whether the instruction caused I-cache or D-cache misses,
the effective address of a memory operand or branch target, and whether the
instruction completed or if not, why it aborted. By aggregating samples from re-
peated executions of the same instruction, various metrics can be estimated for
each instruction. Information about individual instructions can be aggregated
to summarize the behavior of larger units of code. The ProfileMe hardware also
supports paired sampling, which permits the sampling of multiple instructions
that may be in flight concurrently and provides information for analyzing inter-
actions between instructions.

To precisely identify an event’s address, the Itanium processor provides a set
of event address registers (EARs) that record the instruction and data addresses
of data cache misses for loads, or the instruction and data addresses of data TLB
misses [8]. To use EARs for statistical sampling, one configures a performance
counter to count an event such as data cache misses or retired instructions and
specifies an overflow threshold. The data cache EAR repeatedly captures the
instruction and data address of actual data cache load misses. When the counter
overflows, an interrupt is delivered to the monitoring software. The EAR in-
dicates whether or not a qualified event was captured, and if so, the observed
event addresses are collected by the software which then rewrites the perfor-
mance counter with a new overflow threshold. The detection of data cache load
misses requires a load instruction to be tracked during multiple clock cycles from
instruction issue to cache miss occurrence. Since multiple loads may be in flight
simultaneously and the data cache miss EAR can only trace a single load at a
time, the mechanism will not always capture all data cache misses. The proces-
sor randomizes the choice of which load instructions are tracked to prevent the
same data cache load miss in a regular sequence from always being captured,
and the accuracy is considered to be sufficient for statistical sampling.

Sampling by definition introduces statistical error. Samples for individual in-
structions are used to estimate instruction-level event frequencies by multiplying
the number of sampled event occurrences by the inverse of the sampling rate.
For example, assume an average sampling rate of one sample every S fetched
instructions. Let k be the number of samples having a property P. The actual
number of fetched instructions with property P may be estimated as kS. Let N
be the total number of instructions, and let f be the fraction of those having
property P. Then the expected value of kS is fN, and kS will converge to fN
as the number of samples increases. However, the rate of convergence may vary

10

depending on the frequency of property P and the coefficient of variation of
kS. Infrequent events or long sampling intervals will require longer runs to get
enough samples for accurate estimates.

4 TImplications for PAPI

The PAPI cross-platform interface to hardware performance counters supports
both counting and sampling modes. For counting mode, routines are provided
in both the high-level and low-level interfaces for starting, stopping, and read-
ing the counters. For sampling mode, routines are provided in the low-level
interface for setting up an interrupt handler for counter overflow and for gen-
erating SVR4-compatible profiling data with sampling based on any counter
event. Beneath the platform-independent high-level and low-level interfaces lies
a platform-dependent substrate that implements platform-dependent access to
the counters. To port PAPI to a new platform, only the substrate needs to be re-
implemented. Since platform dependencies are isolated in the substrate, changes
in the implementation at this level do not affect the platform-independent in-
terfaces, other than making the operations more efficient or providing platform-
independent features that had not previously been available on that platform.

The PAPI substrate implementations attempt to use the most efficient and
accurate facilities available for native access to the counters. Furthermore, PAPI
attempts to use hardware support for counter overflow interrupts and profiling
where available. Where hardware and operating system support for counter over-
flow interrupts and profiling is not available, PAPI implements these features in
software on top of hardware support for counting mode. However, the converse
has not been attempted — i.e., on platforms such as the Compaq Alpha Tru64
that primarily supports sampling mode, PAPI does not currently implement
counting mode in software on top of sampling mode. Although such an imple-
mentation is theoretically possible, it raises questions about the accuracy of the
resulting event counts since they would be estimated from instruction samples
rather than each event being counted by the hardware.

Although the PAPI interface supports profiling based on PC sampling (or,
where available, on hardware support for identifying the instruction address for
an event), it does not provide access to other information that may be avail-
able for the instruction that caused an event, such as data operand addresses
or latency information. Nor does PAPI support qualification by opcode or by
instruction or data addresses in either counting or sampling modes, although
such qualification is available on some platforms such as the TA-64. For exam-
ple, the Itanium processor provides a way to determine the address associated
with a cache miss. It also provides a way to limit cache miss counting to misses
associated with a user-determined area of memory. These facilities could enable
presentation of data about cache behavior in terms of program data structures
at the source code level. Work reported in [3] has shown that such information
can be extremely useful in identifying performance bottlenecks caused by bad
cache behavior. In [3], the data were obtained through use of a cache simulator

11

which runs considerably slower than the original application (e.g., by a couple of
orders of magnitude) and does not model details such as pipelining and multiple
instruction issue. Through use of appropriate hardware support (e.g., as on the
Itanium), similar data could be obtained more accurately and efficiently.

Although the PAPI library itself does not have any functionality for estimat-
ing or compensating for errors, some utility programs have been provided with
the PAPI distribution that make some initial attempts. The cost utility mea-
sures the overheads in both the number of additional instructions and the num-
ber of machine cycles to executing the PAPI_start/PAPI_stop call pair and the
PAPI_read call. The calibrate utility runs a benchmark for which the number
of floating point operations is known and reports the output of the PAPI_flops
call compared with the known number. Error measurement and compensation
may be most appropriately implemented at the tool layer rather than at the
library layer. However, the PAPT library may be able to provide mechanisms to
enable tools to collect the necessary data.

5 Conclusions and Future Work

It is clear that both counting and sampling modes of hardware performance mon-
itors have their uses and that both should be supported on as many platforms
as possible. However, more work is needed to determine which features are most
desirable to support in a cross-platform interface and to study accuracy issues
related to both models.

Because PAPI presents a portable interface to hardware counters, PAPI is
a good vehicle for exploring usability and accuracy issues. PAPI is a project of
the Parallel Tools Consortium [12], which provides a forum for discussion and
standardization of functionality that may be added in the future. Because of lack
of experience with newly available features such as event qualification and data
address recording, it seems desirable to experiment with these features before
attempting to standardize interfaces to them. The low-level PAPI interface has
a routine (PAPI_add pevent) for implementing programmable events by passing
a pointer to a control block to the underlying PAPI substrate for that platform.
The routine could be used, for example, to set up event qualification on the
Itanium. A corresponding low-level routine (PAPI_read_pevent) has been added
to the developmental version of PAPI to allow arbitrary information to be col-
lected. We plan to use programmable events to experiment with new hardware
performance monitoring features that are becoming available, with the goal of
later proposing standard interfaces to the most useful features. The PAPI profil
call simply generates PC histogram data of where in the program overflows of
a specified hardware counter occur. We plan to implement a modified version
of this routine that will take a control block as an additional input and allow
return of arbitrary information, so as to enable collection of additional infor-
mation about the sampled instruction (e.g., data addresses, pipeline or memory
access latencies). The goal will again be future standardization of the most useful
profiling features.

12

Through the use of microbenchmarks as in [10], we plan to evaluate the
accuracy of counter values obtained by the PAPI interface on all supported
platforms. Where possible, we will provide calibration utilities that attempt to
compensate for measurement errors. We also plan to do statistical studies of
the accuracy and convergence rates of profiling data on different platforms, and
to investigate the feasibility and accuracy of implementing counting mode in
software on top of hardware-supported profiling mode.

For the PAPI software and supporting documentation, as well as pointers
to reference materials and mailing lists for discussion of issues described in this
paper, see the PAPI web site at http://icl.cs.utk.edu/papi/.

References

1. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A Portable Programming
Interface for Performance Evaluation on Modern Processors. International Journal
of High Performance Computing Applications 14:3 (Fall 2000) 189-204.

2. Browne, S., Dongarra, J., Garner, N. London, K., Mucci, P.: A Scalable Cross-
Platform Infrastructure for Application Performance Optimization Using Hard-
ware Counters. SC’2000. Dallas, Texas. November,2000.

3. Buck, B., Hollingsworth, J.K.: Using Hardware Performance Monitors to Isolate
Memory Bottlenecks. SC’2000. Dallas, Texas. November, 2000.

4. Burger, D., Austin, T. M.: The SimpleScalar Tool Set, Version 2.0. University of
Wisconsin-Madison Computer Sciences Department Technical Report 1942. June,
1997. http://www.cs.wisc.edu/ “mscalar/simplescalar.html

5. Dean, J., Hicks, J., Waldspurger, C. A., Weihl, W. E., Chrysos, G.: ProfileMe:
Hardware Support for Instruction-Level Profiling on Out-of-Order Processors. 30th
Symposium on Microarchitecture (Micro-30). December, 1997.

6. Dean, J., Waldspurger, C. A., Weihl, W. E.: Transparent, Low-Overhead Profiling

on Modern Processors. Workshop on Profile and Feedback-Directed Compilation.

Paris, France. October, 1998.

HPCView: http://www.cs.rice.edu/ dsystem/hpcview/

8. Intel IA-64 Architecture Software Developer’s Manual, Volume 4: Itanium Proces-

sor Programmer’s Guide. Intel, July 2000. http://developer.intel.com/

9. Intel Itanium Processor Reference Manual for Software Development. Intel, De-

cember 2001. http://developer.intel.com/

10. Korn, W., Teller, P., Castillo, G.: Just how accurate are performance counters? 20th
IEEE International Performance, Computing, and Communications Conference.
Phoenix, Arizona. April, 2001.

11. PCL - the Performance Counter Library: http://www.kfa-juelich.de/zam/PCL/

12. Parallel Tools Consortium: http://www.ptools.org/

13. Pressel, D.: Envelope: A New Approach to Performance Prediction. Department
of Defense HPC Users Group Conference. Biloxi, Mississippi. June, 2001.

14. Origin 2000 and Onyx2 Performance Tuning and Optimization Guide. SGI Docu-
ment number 007-3430-003. July, 2001. http://techpubs.sgi.com/

15. Snavely, A., Wolter, N., Carrington, L.: Modeling Application Performance by Con-
volving Machine Signatures with Application Profiles. IEEE 4th Annual Workshop
on Workload Characterization. Austin, Texas. December, 2001.

16. The Visual Profiler: http://aros.ca.sandia.gov/ cljanss/perf/vprof/

=

